Control System Toolbox™ Release Notes

MATLAB

=) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox ™ Release Notes
© COPYRIGHT 2002-2018 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

R2018a

Particle Filter Simulink Block: Estimate states of nonlinear
systems for online tracking and control system design 1-2

c2d Function: Convert models to discrete time using least-
squares optimization 1-2

Control System Designer: Change sample time of control

System 1-3

Control System Designer: Create Simulink model for control
architecture 1-4
R2017b

Gain Scheduling: Implement gain-scheduled controllers using
a new library of blocks configured to take scheduled
parametersasinputs 2-2

Gain Scheduling: Achieve smooth and memory-efficient
implementation by turning gain surfaces into embedded
equations 2-2

Gain-Scheduled Controller Tuning: Automatically tune gain-
scheduled state observer gain, LQR gain, and other
controller architectures expressed as matrices 2-3
Gain-Scheduled Controller Tuning: Specify tuning goals that

vary with operating condition 2-4

iii

iv

Contents

Tuning Gain Surfaces: Custom normalization, lookup-table

updates, and other enhancements 2-4
Gain-Scheduled Controller Tuning: Exclude design points from

tuningoranalysis 2-5
Particle Filters: Estimate states of nonlinear systems 2-6
Improved lqg Function: Compute gain matrices and optimal

controller in discrete time using current Kalman Filter

estimator 2-7
Model Reduction: balred no longer ignores DCMatch option

when specified frequency or time intervals excludes DC ... 2-7
Regularization of conic-sector tuning goal in Control System

Tuner e 2-8
Dynamic system models store Notes property as string or

charactervector 2-8
Functionality being removed or changed 2-9

R2017a

Extended and Unscented Kalman Filter Simulink Blocks:

Estimate states of nonlinear systems 3-2
New properties of generalized state-space models and

matrices e 3-2
Discrete-time frequency-dependent specifications for

tuninggoals 3-3
Regularization of tuning goals for improved numeric

stability 3-3
Maximum Natural Frequency Option in Control System Tuner:

Prevent poles and zeros from going to infinity 3-4

Scaling information passed automatically to viewSpec and

evalSpec 3-4
Functionality being removed or changed 3-5
R2016b

Conic Sector Tuning Goal: Tune control systems to enforce
fixed or frequency-dependent sector bounds 4-2

Improved Passivity Tuning Goal: Set output passivity index to a
negativevalue 4-2

MaxRadius Option for Tuning: Prevent poles and zeros from
going toinfinity L. 4-2

Improved getSectorIndex and sectorplot Functions: Compute
and plot sector index for unstable systems 4-3

Extended and Unscented Kalman Filters: Estimate states of
nonlinearsystems 4-3

Phase-Wrap Branch Option: Specify cutoff point for wrapping
phase inresponseplots 4-3

R2016a

Redesigned Control System Designer App: Design SISO
controllers for feedback systems using improved interactive
workflows 5-2

Control System Tuner App and systune Command:
Automatically tune single-loop and multiloop control
systems to meet design requirements 5-3

vi

Contents

Model Reducer App: Compute and compare reduced-order

models using interactive workflows 5-3
Passivity and Conic Sectors: Analyze and tune control systems

for passivity and other sectorbounds 5-4
Limited Balanced Truncation: Reduce model order according

to energies within time-domain and frequency-domain

intervals 5-5
sampleBlock and rsampleBlock commands for sampling

generalizedmodels 5-6
Spectral factorization of LTI models 5-6
Renamed tunable control design blocks 5-6
Functionality being removed or changed 5-7

R2015b

pid2 and pidstd2 Model Objects: Represent, analyze, and use

2-DOF PID controllers for control design 6-2
2-DOF PID Controller Tuning: Automatically tune the gains of

2-DOF PID controllers with PID Tuner app and pidtune

command 6-2
Save Current Controller Design as Baseline in PID Tuner 6-3
Change in LPV System block default values for model

delays 6-4
Analysis Plots Wrap Phase in Interval [02,36092) 6-5

R2015a

Improved input disturbance rejection with the PID tuning

algorithm 7-2
Option to specify code generation settings in LPV System
block 7-3
connect command syntax for specifying analysis point
locations 7-3
LTI Viewer renamed to Linear System Analyzer 7-4
sisotool function renamed to controlSystemDesigner 7-5
getBlockValue returns all block values in structure 7-5
Functionality being removed or changed 7-6
R2014b

LPV System block for modeling and simulating linear
parameter-varying systems 8-2

Kalman Filter block for estimating states of linear time-
invariant and linear time-varying systems 8-3

AnalysisPoint Control Design Block for Marking Points of

Interest for Linear Analysis 8-3
pidtool function renamed to pidTuner 8-4
getSwitches function renamed to getPoints 8-5
Functionality being removed or changed 8-5

viii

Contents

R2014a

Redesigned PID Tuner app for improved PID tuning workflo

PID controller tuning using system identification to model the
plant from measured input-output data in the PID Tuner app
(with System Identification Toolbox) 9-2

freqsep function for decomposing a linear system into fast
dynamics and slow dynamics 9-2

damp command display includes time constant
information 9-3

R2013b

SamplingGrid property for tracking dependence of array of
sampled models on variable values 10-2

Option to retain unconnected states when interconnecting
models using connect command 10-2

connect command always returns state-space or frequency
response datamodel 10-3

updateSystem command for updating dynamic system data in a

responseplot 10-3
getLoopID renamed to getSwitches 10-3
LoopID property of loopswitch renamed to Location 10-4

R2013a

Transient behavior slider for PID Tuner, increasing control
over reference tracking and disturbance rejection
performance 11-2

R2012b

Itiblock.pid2 and loopswitch objects for tuning two-degree-of-
freedom PID controllers and marking loop opening sites for
open-loop requirements 12-2

Commands for obtaining open-loop responses, closed-loop
responses, and current values of tunable components from
control systemmodels 12-2

Option for elementwise operation of model query commands
onmodelarrays, 12-3

R2012a

Frequency Analysis Commands for Calculating Peak Gain and

Finding Gain-Crossover Frequencies 13-2
Specify Target Crossover Frequency as Input to pidtune 13-2
Rescaled Impulse Response and Impulse-Invariant Time

Domain Conversion 13-2
First-Order Hold Method ford2c 13-3
tzero Computes Invariant Zeros and Transmission Zeros . . . 13-3

ix

X

Contents

Models Created With System Identification Toolbox Can Be

Used Directly With Control System Toolbox Functions . . . 13-3
Functionality Being Removed or Changed 13-4
R2011b

Formula-Based Specification of Summing Junctions and Vector
Signal Naming for sumblk and connect 14-2

Commands for Interacting with Control Design Blocks in

Generalized LTI Models 14-2
Functionality Being Removed or Changed 14-2
R2011a

New Model Objects for Representing Tunable Parameters and
Systems with Tunable Components 15-2

New Time and Frequency Units for Models and Response
Plots 15-3

Discrete-Time PID Controller Objects Have Stable Derivative
FilterPole i, 15-4

New Variable g~ -1 for Expressing Discrete-Time Transfer
Functions 15-5

R2010b

New Commands and GUI for Modeling and Tuning PID

Controllers 16-2
PID Controller Design with the New PID Tuner GUI 16-2
PID Controller Design with the New pidtune Command 16-2
Modeling PID Controllers in Parallel Form or Standard
Form 16-3
Improved PID Tuning Options in SISO Design Tool 16-3
Ability to Analyze a Controller Design for Multiple Models
Simultaneously in SISO DesignTool 16-4
Change in Output of repsys Command 16-4
R2010a

Enhanced c2d Command to Approximate Fractional Time
Delays in Tustin and Matched Discretization Methods . . . 17-2

New Commands for Specifying Options for Continuous-
Discrete Conversions 17-2

New FDEL Command to Remove Specified Data from

Frequency Response Data (FRD) Models 17-2
R2009b

Ability to Design Compensators for New Types of Plants 18-2
New Automated PID Tuning Method 18-2

xi

xii

Contents

R2009a

Variable ¢ Now Defined as the Forward Shift Operatorz 19-2

R2008b

New Design Tools for Linear-Quadratic-Gaussian (LQG) Servo

Controllers with Integral Action 20-2
Current Flag Moved from Iqgreg to kalman 20-2
New Upsampling Method for Rate Conversion in Discrete-Iime
Models 20-2
New Scaling Tools to Enhance the Accuracy of Computations
with State-Space Models 20-3
New Command to Reorder the States of State-Space
Models 20-3
Enhanced Support for Customizing Response Plots 20-3
R2008a
Updated Error and Warning Message System 21-2
R2007b
Updated and Expanded Demos 22-2

Analysis of Time Delay Systems Now Fully Supported 23-2
New and Updated Automated Tuning Methods 23-2
New Tustin and Prewarp Options for d2d Function 23-2
R2006b
New Loop Configurations in the SISO Design Tool 24-2
New Design Requirements 24-2
R2006a
SISODesignTool 25-2
Compensator Optimization Is Now Supported 25-2
Improved Compensator Editor 25-2
Multi-Loop Compensator Design Support 25-2
SISO Design Tool Fully Integrated with the Controls &
Estimation Tools Manager 25-2
LTI Viewer Enhancements 25-3
LTIObjects i i 25-3
Descriptor and Improper State-Space Models Fully
Supported 25-3
New Commands to Calculate Time Response Metrics 25-3
Simplified System Interconnections Using I/O
Channel Names 25-3

Changes in the Representation of I/O Delays in State-Space
Models 25-3

xiii

xiv

Contents

New Name Property for LTI Objects 25-4
New Commands and Operations for LTI Objects 25-4
Numerical Algorithms 25-4
R14SP3

No New Features or Changes
R14SP2
Command-Line API for Customizing Plots 27-2
Constraint Types for SISO Design 27-2
Bode and Nichols Plots Have Additional Options 27-2
Model-Approximation and Order-Reduction Commands 27-2

R2018a

Version: 10.4
New Features

Bug Fixes

R2018a

1-2

Particle Filter Simulink Block: Estimate states of nonlinear
systems for online tracking and control system design

Perform state estimation for arbitrary nonlinear models using the new Particle Filter
block in Simulink®. Particle filters are flexible in comparison to Kalman filters, that is,
they can also perform state estimation for nonlinear systems with non-Gaussian
distributions.

Particle Filter block uses particles and sensor data to estimate the posterior distribution
of the current state. The filter predicts the states using the nonlinear state transition
function. Then, it corrects the estimate based on sensor data and measurement likelihood
model. You can specify a fixed number of particles to use, a fixed number of state
variables to estimate, and your state estimation method.

You can find the Particle Filter block in the Control System Toolbox > State
Estimation block library in Simulink.

You can use Simulink Coder™ to deploy particle filters with multiple measurement
models and fixed-size arrays for your application.

For more information on the Particle Filter block, see Particle Filter. For more information
on the detailed workflow, see “Parameter and State Estimation in Simulink Using Particle
Filter Block”.

c2d Function: Convert models to discrete time using least-
squares optimization

You can now convert continuous-time dynamic system models to discrete time using a
new least-squares optimization method. This algorithm minimizes the error between the
frequency responses of the continuous-time and discrete-time systems up to the Nyquist
frequency. This method is useful when you want to capture fast system dynamics but must
use a larger sample time, for example, when computational resources are limited.

To convert a model using this approach, specify the discretization method as 'least-
squares'.

discreteModel = c2d(contModel,Ts, 'least-squares');

Alternatively, you can create a c2dOptions option set, and set the Method property to
'least-squares'. You can then use this option set with the c2d function.

options = c2dOptions('Method', 'least-squares');
discreteModel = c2d(contModel,Ts,options);

This conversion method supports only SISO models.

For more information, see c2d and c2dOptions.

Control System Designer: Change sample time of control
system
You can now modify the sample time of your control system in Control System

Designer. To do so, on the Control System tab, under Edit Architecture, click Sample
Time Conversion.

4\ Control System Designer - Bode Editor for LoopTransfer_C

CONTROL SYSTEM BODE EDITOR

Multimodel
Configuration

Edit Architecture

Data Browser T select and edit the

w Controllers ahd F control architecture,

F Sample Time Conversion [
Tez ange the sample h

G time of the architecture

H

LL1= ™ L™ ||.LJI_J

W"’\

In the Sample Time Conversion dialog box, specify the Sample time, and select a
Conversion method for each block in the control system. For more information on the
available conversion methods, see “Continuous-Discrete Conversion Methods”. Control
System Designer does not support the new least-squares vector fitting approach.

1-3

R2018a

1-4

4 Sample Time Co.. — X

— Discretize with

Sample time (zec). |1

— Conversion Method

C: | Zero-Order Hold w
F: |Zero-Order Hold e
G |Zero-Order Hold w

H: | Zero-Order Hold '

oK Cancel Help Apphy

Click OK.

The app converts the dynamic model of each block to discrete time using the specified
sample time and conversion method.

If your model is already in discrete time, you can choose to convert it to continuous time
or to resample the system using a different sample time.

Control System Designer: Create Simulink model for control
architecture

You can now generate a Simulink model for your tuned control system architecture in
Control System Designer.

For more information, see “Generate Simulink Model for Control Architecture”.

R2017b

Version: 10.3
New Features
Bug Fixes

Compatibility Considerations

R2017b

2-2

Gain Scheduling: Implement gain-scheduled controllers using
a new library of blocks configured to take scheduled
parameters as inputs

A new library of Simulink blocks lets you implement common control-system elements
with variable parameters. The new blocks in the Linear Parameter Varying library take
parameter values as inputs, letting you compute those values at run-time in your model.

These blocks are useful for implementing gain-scheduled controller elements in which the
parameter values vary as a function of scheduling variables. For instance, the new
Varying Notch Filter block accepts as inputs the notch frequency, the gain at the notch
frequency, and the damping ratio of the filter poles. In your model, you connect each of
these inputs to an element such as a lookup table or MATLAB function block that
computes the parameter value from the scheduling variables.

The available variable-parameter control-system elements include:

* Varying Transfer Function, Discrete Varying Transfer Function
* Varying Lowpass Filter, Discrete Varying Lowpass

» Varying Notch Filter, Discrete Varying Notch

» Varying State Space, Discrete Varying State Space

* Varying Observer Form, Discrete Varying Observer Form

The library also includes versions of the PID Controller and PID Controller (2DOF) blocks
that are preconfigured to accept PID coefficients as inputs.

To access the new library, in the Simulink Library Browser, select Control System
Toolbox > Linear Parameter Varying. For more information about using the blocks to
implement gain-scheduled control systems, see Model Gain-Scheduled Control Systems in
Simulink.

Gain Scheduling: Achieve smooth and memory-efficient
implementation by turning gain surfaces into embedded
equations

In a gain-scheduled control system, controller gains vary as a function of one or more
scheduling variables. In a Simulink model, one way to implement a scheduled gain is to
use a MATLAB function block to represent the equations relating controller gains to

https://www.mathworks.com/help/releases/R2017b/control/ref/varyingtransferfunction.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingtransferfunction.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyinglowpassfilter.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryinglowpass.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyingnotchfilter.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingnotch.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyingstatespace.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingstatespace.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyingobserverform.html
https://www.mathworks.com/help/releases/R2017b/control/ref/discretevaryingobserverform.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html

scheduling-variable values. You can now use systune to tune those equations
automatically and write the resulting relationship back to the MATLAB function block.
Previously, you had to convert the tuned relationship to a discrete lookup table relating
scheduling variables to gain values. While you can still use this approach, the new
functionality can achieve smoother variation of scheduled gains by evaluating the
equation that relates gains to scheduling variables.

To tune MATLAB function blocks representing scheduled gain values, you parameterize
each MATLAB function block with a tunableSurface object that represents the
equation relating gain to scheduling parameters. When you write the tuned parameters
back to your model, the MATLAB function is automatically updated with MATLAB®code
for the tuned gain surface. Use the new codegen command to examine the MATLAB code
for the gain schedule.

If you have a code-generation product such as Simulink Coder, you can implement the
tuned gain schedule in hardware. The new functionality can result in more memory-
efficient implementation, storing only the gain surface coefficients rather than a
potentially long list of lookup-table values.

For more information about modeling and tuning gain-scheduled control systems in
Simulink, see:

* Model Gain-Scheduled Control Systems in Simulink

* Tune Gain Schedules in Simulink

Tuning control systems modeled in Simulink requires Simulink Control Design™
software.

Gain-Scheduled Controller Tuning: Automatically tune gain-
scheduled state observer gain, LQR gain, and other controller
architectures expressed as matrices

You can now use systune for automatic tuning of matrix-valued gain schedules and

implement them in MATLAB function blocks or Matrix Interpolation blocks. For instance,
suppose that you want to implement a time-varying LQG controller of the form:

dx, = Ax, + Bu+L(t)(y — Cx, — Du)
u=-K(t)x,,

2-3

https://www.mathworks.com/help/releases/R2017b/control/ref/codegen.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/tune-gain-schedules-in-simulink-1.html

R2017b

2-4

where the state-feedback matrix K and the observer-gain matrix L vary with time. In your
Simulink model, use the new Varying Observer Form block to represent the LQG
controller. Then use MATLAB function blocks to implement the time-varying matrices as
inputs to the Varying Observer Form block. When you set up the model for tuning,
parameterize the MATLAB function block using a tunableSurface that computes a
matrix value as a function of time. When you tune the control system with systune and
write the tuned controller parameters back to the model, the MATLAB function block is
automatically updated with MATLAB code for the tuned gain surface.

For more information about:

* The Varying Observer Form block and other new variable-parameter blocks for gain
scheduling, see “Gain Scheduling: Implement gain-scheduled controllers using a new
library of blocks configured to take scheduled parameters as inputs” on page 2-2.

* Modeling gain-scheduled control systems in Simulink, see Model Gain-Scheduled
Control Systems in Simulink.

» Creating gain surfaces for tuning gain schedules, see Parameterize Gain Schedules.

Tuning control systems modeled in Simulink requires Simulink Control Design software.

Gain-Scheduled Controller Tuning: Specify tuning goals that
vary with operating condition

When tuning fixed or gain-scheduled controllers at multiple design points representing
different operating conditions, it is sometimes useful to adjust the design objectives as a
function of operating condition. For example, you might want to relax design
requirements in some regions of the operating range. The new varyingGoal function
lets you construct tuning goals that depend implicitly or explicitly on the design point.

For more information about configuring varying requirements for gain scheduling, see:

* The varyingGoal reference page
* Change Requirements with Operating Condition

Tuning Gain Surfaces: Custom normalization, lookup-table
updates, and other enhancements

This release includes enhancements to tunable gain surfaces that improve the workflow
for tuning gain schedules.

https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/set-up-simulink-models-for-gain-scheduling.html
https://www.mathworks.com/help/releases/R2017b/control/ug/parametric-gain-surfaces.html
https://www.mathworks.com/help/releases/R2017b/control/ref/varyinggoal.html
https://www.mathworks.com/help/releases/R2017b/control/ug/changing-requirements-with-operating-condition.html

* Custom normalization of scheduling variables in tunable surface — By default, the
tunableSurface representation of a gain surface normalizes the scheduling
variables so that the design range of each variable falls within the interval [-1,1]. You
can change this normalization using the new Normalization property of
tunableSurface. Changing the normalization is useful, for example, when you have
a known gain value for a design point, or want to restrict a scheduling variable to
positive values. For more information, see tunableSurface.

* Update portion of lookup table — You can now update a single point or a portion of a
lookup table in a Simulink model that you tuned using slTuner and systune. To
perform the update, use the new writeLookupTableData command. This command
is useful when you are retuning a single design point or a subset of design points
covered by the lookup table. Previously, you could only use writeBlockValue to
update the entire lookup table.

* Name scheduling variables in basis functions — New syntaxes for polyBasis and
fourierBasis let you assign names to the input variables of the basis functions
generated by these commands. The names are preserved when you combine basis
functions using ndBasis. Naming basis-function variables can improve readability of
the generated basis functions and of code generated from a tunableSurface object
that you create with the basis functions. For more information, see the reference
pages for these commands.

* Tunable surface with constant gain — A new syntax of tunableSurface lets you
create a flat gain surface with constant, tunable gain. For more information, see
tunableSurface.

Gain-Scheduled Controller Tuning: Exclude design points from
tuning or analysis

When you have created a design grid of tunable, linearized models for gain-scheduled
controller tuning, you can now exclude one or more design points from tuning without
removing the corresponding model from the array. Doing so can be useful, for example, to
identify problematic design points when tuning over the entire design grid fails to meet
your design requirements. It can also be useful when there are design points that you
want to exclude from a particular tuning run, but preserve for performance analysis or
further tuning. To exclude design points from tuning, use the new SkipModels option of
systuneOptions, which lets you specify models in the design grid to exclude from
tuning.

As an alternative, you can eliminate design points from the model grid entirely, so that
they do not contribute to any stage of tuning or analysis. To do so, use the new

2-5

https://www.mathworks.com/help/releases/R2017b/control/ref/tunablesurface.html
https://www.mathworks.com/help/releases/R2017b/slcontrol/ug/writelookuptabledata.html
https://www.mathworks.com/help/releases/R2017b/control/ref/polybasis.html
https://www.mathworks.com/help/releases/R2017b/control/ref/fourierbasis.html
https://www.mathworks.com/help/releases/R2017b/control/ref/ndbasis.html
https://www.mathworks.com/help/releases/R2017b/control/ref/tunablesurface.html
https://www.mathworks.com/help/releases/R2017b/control/ref/systuneoptions.html

R2017b

2-6

voidModel command, which replaces specified models in a model array with NaN. This
approach is useful when your sampling grid includes points that represent irrelevant or
unphysical design points. Using voidModel lets you design over a grid of design points
that is almost regular.

For more information about controlling how different design points contribute to tuning,
see Change Requirements with Operating Condition.

Particle Filters: Estimate states of nonlinear systems

Perform state estimation for arbitrary nonlinear system models using the new
particleFilter command. Particle filters are flexible, that is, they can also perform
state estimation for nonlinear systems with non-Gaussian distributions. Previously, you
could perform state estimation only for systems with unimodal distributions using
extended or unscented Kalman filters.

particleFilter uses particles and sensor data to estimate the posterior distribution of
the current state. The filter predicts the states using the nonlinear state transition
function. Then, it corrects the estimate based on sensor data and measurement likelihood
model. You can specify a fixed number of particles to use, a fixed number of state
variables to estimate, and your state estimation method based on the particle weights.

To use a particle filter for state estimation:

Create a particle filter, and set the transition and measurement likelihood functions.

Initialize the particle filter by specifying the number of particles to be used and your
initial state guess. Also specify state bounds or covariance of the initial particle
distribution.

3 Specify the state estimation and resampling method.
Perform state estimation.

You can use MATLAB Compiler™ or MATLAB Coder software to deploy the particle filter
for your application.

For more information and examples, see the particleFilter reference page.

https://www.mathworks.com/help/releases/R2017b/control/ref/voidmodel.html
https://www.mathworks.com/help/releases/R2017b/control/ug/changing-requirements-with-operating-condition.html
https://www.mathworks.com/help/releases/R2017b/control/ref/particlefilter.html

Improved Iqg Function: Compute gain matrices and optimal
controller in discrete time using current Kalman Filter
estimator

When designing an LQG controller for a discrete-time plant using the 1qg function, you
can now use the current type of Kalman estimator, which uses x[n|n] as the state
estimate. Previously, the 1qg function supported using only the delayed type of Kalman
estimator; that is, using x[n|n-1] as the state estimate. For more information about the
types of Kalman estimators, see kalman.

Also, you can now return the controller and estimator gain matrices when using the 1qg
function. You can use the controller and estimator gains to, for example, implement the
controller in observer form.

For more information, see 1qg.

Model Reduction: balred no longer ignores DCMatch option
when specified frequency or time intervals excludes DC

When you use balred for model reduction, you can use balredOptions to restrict the
computation to specified frequency or time intervals. If the StateElimMethod option of
balredOptions is setto 'MatchDC' (the default value), then balred attempts to match
the DC gain of the original and reduced models, even if the specified intervals exclude DC
(frequency = 0 or time = Inf). This behavior might reduce the quality of the match in the
specified intervals. To improve the match within intervals that exclude DC, set
StateElimMethod = 'Truncate'. For more information, see balredOptions.

In the Model Reducer app, there is no change in behavior.

Compatibility Considerations

Previously, if time or frequency intervals excluded DC, balred did not attempt to match
the DC gain of the original and reduced models, even if StateElimMethod =
"MatchDC'. If you have scripts or functions that use balred with restricted time or
frequency intervals that exclude DC, consider updating them to set StateElimMethod =
'Truncate'. The balred command now issues a warning when StateElimMethod =
"MatchDC' and the specified time or frequency intervals exclude DC.

2-7

https://www.mathworks.com/help/releases/R2017b/control/ref/kalman.html
https://www.mathworks.com/help/releases/R2017b/control/ref/lqg.html
https://www.mathworks.com/help/releases/R2017b/control/ref/balredoptions.html

R2017b

2-8

Regularization of conic-sector tuning goal in Control System
Tuner

The Conic Sector Goal in the Control System Tuner app has a new Regularization
option that allows you to specify a nonzero regularization parameter. This option is useful
when other tuning goals tend to make the sector bound ill-conditioned at some
frequencies. For more information, see Conic Sector Goal.

This new option is equivalent to the Regularization property of
TuningGoal.ConicSector, introduced in R2017a for command-line tuning.

Dynamic system models store Notes property as string or
character vector

The Notes property of a dynamic system model stores any text that you want to associate
with the model. This property now accepts either character-vector or string values, and
stores whichever type you provide. For instance, if sys1 and sys2 are dynamic system
models, you can set their Notes properties as follows:

sysl.Notes = "sysl has a string.";
sys2.Notes = 'sys2 has a character vector.';
sysl.Notes

sys2.Notes

ans =

"sysl has a string."

ans =
1x1 cell array
{'sys2 has a character vector.'}

When you create a new model, the default value of Notes is now [0x1 string].
Previously, you could only specify the Notes property as a character vector or cell array
of character vectors, and the default value was {}.

Some other dynamic system model properties accept strings as inputs, but store the
values as character vectors or a cell array of character vectors.

https://www.mathworks.com/help/releases/R2017b/control/ug/conic-sector-goal.html
https://www.mathworks.com/help/releases/R2017b/control/ref/tuninggoal.conicsector-class.html
https://www.mathworks.com/help/releases/R2017b/matlab/ref/string.html

Functionality being removed or changed

Functionality Res |Use This Instead Compatibility Considerations
ult

balred with War |[StateElimMethod = See “Model Reduction: balred

StateElimMethod = ns 'Truncate' no longer ignores DCMatch

'MatchDC' and restricted option when specified

time or frequency range that frequency or time intervals

excludes DC excludes DC” on page 2-7.

viewSpec, evalSpec Still |viewGoal, evalGoal If you have functions or scripts
work that use viewSpec or

evalSpec, consider updating
them to use viewGoal and
evalGoal instead.

2-9

https://www.mathworks.com/help/releases/R2017b/control/ref/viewgoal.html
https://www.mathworks.com/help/releases/R2017b/control/ref/evalgoal.html

R2017a

Version: 10.2
New Features
Bug Fixes

Compatibility Considerations

R2017a

3-2

Extended and Unscented Kalman Filter Simulink Blocks:
Estimate states of nonlinear systems

You can now use the Extended Kalman Filter and Unscented Kalman Filter blocks to
estimate the states of a discrete-time nonlinear system in Simulink. The blocks use first-
order extended and unscented Kalman filter algorithms to estimate states as new data
becomes available during the operation of the system. Previously, nonlinear state
estimation using these algorithms was available at the command line only. You can use the
state estimates for state-feedback controllers and for applications such as condition
monitoring and fault detection. You can also generate C/C++ code for these blocks using
Simulink Coder software.

For information about how to use these blocks, see the Extended Kalman Filter and
Unscented Kalman Filter block reference pages. For examples, see Estimate States of
Nonlinear System with Multiple, Multirate Sensors and Nonlinear State Estimation of a
Degrading Battery System.

New properties of generalized state-space models and
matrices

The generalized state-space model object, genss, has the following new properties:

* StateName and StateUnit — Track the state names and state units of the fixed LTI
components and control design blocks that make up the model. When you build a
genss model from fixed and tunable LTI components, it inherits the StateName and
StateUnit values from these components

* A, B, C, D, and E — Access the state-space matrices of a genss model. These
properties model the dependency of the state-space matrices on static control design
blocks, such as realp, ureal, ucomplex, or ucomplexm.

For more information and examples, see the genss reference page.

Additionally, the generalized matrix object, genmat, now has a Name property. Use the
property to assign a name to the generalized matrix. When you convert a static control
design block such as tunableSurface to a generalized matrix using genmat (blk), the
Name property of the block is preserved.

https://www.mathworks.com/help/releases/R2017a/control/ref/ekf_block.html
https://www.mathworks.com/help/releases/R2017a/control/ref/ukf_block.html
https://www.mathworks.com/help/releases/R2017a/control/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://www.mathworks.com/help/releases/R2017a/control/ug/multirate-nonlinear-state-estimation-in-simulink.html
https://www.mathworks.com/help/releases/R2017a/control/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/releases/R2017a/control/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html
https://www.mathworks.com/help/releases/R2017a/control/ref/genss.html
https://www.mathworks.com/help/releases/R2017a/control/ref/genmat.html

Discrete-time frequency-dependent specifications for tuning
goals

You can now use discrete-time LTI models to specify frequency-dependent gain profiles
for tuning in discrete time. Tuning goals that you can now specify in discrete time
include:

* Frequency-dependent minimum gains, maximum gains, and loop gains.
* Frequency-dependent rejection, sensitivity, or error profiles.
* Frequency-dependent weighting functions.

If you specify the gain profile in continuous time for tuning in discrete time, the tuning
software discretizes the profile. Specifying the gain profile in discrete time gives you
more control over the gain profile near the Nyquist frequency. For more information, see
the documentation for the individual tuning goals.

Regularization of tuning goals for improved numeric stability

When you use a tuning goal with a frequency-dependent specification, the tuning
algorithm uses a frequency-weighting function to compute the normalized value of the
tuning goal. This weighting function is derived from the gain profile that you specify. For
numeric stability and tractability, the software now adjusts the specified gain profile when
necessary to eliminate undesirable low-frequency or high-frequency dynamics or
asymptotes. This adjustment process is called regularization.

The regularized gain profile is displayed on tuning-goal plots generated with viewSpec
or in Control System Tuner. For affected tuning goals, the getWeight or getWeights
command extracts the regularized frequency-weighting functions. For more information
about regularization, see Visualize Tuning Goals and the documentation for the individual
tuning goals.

Also, the conic sector goal has a new Regularization property that allows you to
specify a nonzero regularization parameter. This property is useful when other tuning
goals tend to make the sector bound ill-conditioned at some frequencies. For more
information, see TuningGoal.ConicSector.

3-3

https://www.mathworks.com/help/releases/R2017a/control/ug/visualize-tuning-goals.html
https://www.mathworks.com/help/releases/R2017a/control/ref/tuninggoal.conicsector-class.html

R2017a

3-4

Maximum Natural Frequency Option in Control System Tuner:
Prevent poles and zeros from going to infinity

Most tuning goals in the Control System Tuner app include implicit stability or
minimum-phase constraints. The new Maximum natural frequency tuning option
constrains the maximum natural frequency of the corresponding stabilized poles and
zeros. This option is useful to prevent poles and zeros from going to infinity as a result of
algebraic loops becoming singular or control effort growing unbounded. To access the
option in the app, on the Tuning tab, click Tuning Options.

For more information about stabilized poles and zeros, see the documentation for each
tuning goal, listed on the Tuning Goals page.

The new option is equivalent to the MaxRadius option of systuneOptions, introduced
in R2016b for command-line tuning.

Scaling information passed automatically to viewSpec and
evalSpec

When you use systune to tune a MIMO feedback loop, some tuning goals are sensitive to
the relative scaling of each SISO loop. systune tries to balance the overall loop-transfer
matrix while enforcing such goals. The optimal loop scaling is now stored in the tuned
closed-loop model returned by systune. When you pass the tuned model to viewSpec or
evalSpec to examine tuning results, these functions take this scaling into account.
Previously, you had to pass the info output of systune to these functions to ensure
consistent scaling.

For more information, see viewSpec or evalSpec.

Compatibility Considerations

You no longer need to use the syntaxes viewSpec(Req,CL,info) and
evalSpec(Req,CL,info) to ensure consistent scaling. The syntaxes
viewSpec(Req,CL) and evalSpec(Req, CL) obtain any necessary scaling information
from the closed-loop model CL returned by systune. To force the functions to disregard
scaling information, use viewSpec(Req,CL, []) or evalSpec(Req,CL,[]).

https://www.mathworks.com/help/releases/R2017a/control/tuning-goals.html
https://www.mathworks.com/help/releases/R2017a/control/ref/systuneoptions.html
https://www.mathworks.com/help/releases/R2017a/control/ref/viewspec.html
https://www.mathworks.com/help/releases/R2017a/control/ref/evalspec.html

Functionality being removed or changed

Functionality Res |Use This Instead Compatibility Considerations
ult
Q property of Still |SectorMatrix If you have scripts or functions
TuningGoal.ConicSector |work that refer to the Q property of a
S TuningGoal.ConicSector
object, update them to use the
new property name
SectorMatrix.
* viewSpec(Req,CL,inf |Still |+ viewSpec(Req,CL) If you have scripts or functions
0) work that use the info argument,

* evalSpec(Req,CL,inf
0)

* evalSpec(Req,CL)

consider updating them to
remove the argument. See
“Scaling information passed
automatically to viewSpec and
evalSpec” on page 3-4.

R2016b

Version: 10.1
New Features

Bug Fixes

R2016b

4-2

Conic Sector Tuning Goal: Tune control systems to enforce
fixed or frequency-dependent sector bounds

A conic system is a system whose trajectories lie in a given conic sector of I/O space. In
some control applications, it is useful to restrict system trajectories to a particular sector.
Such bounds arise, for example, in robust control of feedback loops with static
nonlinearities. New goals for control system tuning let you impose conic sector bounds on
responses of the tuned system.

* Use TuningGoal.ConicSector for tuning at the command line with systune.
* Use Conic Sector Goal for tuning in Control System Tuner.

For more information about conic systems, see About Sector Bounds and Sector Indices.

Improved Passivity Tuning Goal: Set output passivity index to
a negative value

You can now specify a negative output passivity index when tuning a control system using
systune or Control System Tuner. Specifying a negative output passivity index for a
particular response lets the tuned response have a shortage of passivity at the output.
Negative output passivity index values are permitted in:

* TuningGoal.Passivity and TuningGoal.WeightedPassivity, for tuning at the
command line with systune.
* Passivity Goal and Weighted Passivity Goal, for tuning with Control System Tuner.

Previously, you could specify a negative or positive input passivity index with these tuning
goals, but only a positive output passivity index.

For more information about passivity indices, see About Passivity and Passivity Indices.

MaxRadius Option for Tuning: Prevent poles and zeros from
going to infinity

Most tuning goals used for control system tuning with systune include implicit stability
or minimum-phase constraints. The new MaxRadius option of systuneOptions
constrains the maximum natural frequency of the corresponding stabilized poles and
zeros. This option is useful to prevent poles and zeros from going to infinity as a result of
algebraic loops becoming singular or control effort growing unbounded. For more

https://www.mathworks.com/help/releases/R2016b/control/ref/tuninggoal.conicsector-class.html
https://www.mathworks.com/help/releases/R2016b/control/ug/conic-sector-goal.html
https://www.mathworks.com/help/releases/R2016b/control/ug/sector-bounds-and-sector-indices.html
https://www.mathworks.com/help/releases/R2016b/control/ref/tuninggoal.passivity-class.html
https://www.mathworks.com/help/releases/R2016b/control/ref/tuninggoal.weightedpassivity-class.html
https://www.mathworks.com/help/releases/R2016b/control/ug/passivity-goal.html
https://www.mathworks.com/help/releases/R2016b/control/ug/frequency-weighted-passivity-goal.html
https://www.mathworks.com/help/releases/R2016b/control/ug/about-passivity-and-passivity-indices.html

information, see the systuneOptions reference page and the reference pages for each
tuning goal.

Improved getSectorindex and sectorplot Functions: Compute
and plot sector index for unstable systems

You can now use getSectorIndex and sectorplot to analyze the sector index for both
stable and unstable systems. Previously, providing an unstable system as input to either of
these functions generated an error.

Extended and Unscented Kalman Filters: Estimate states of
nonlinear systems

You can now estimate the states of discrete-time nonlinear systems at the command line
using first-order extended Kalman filter algorithms and unscented Kalman filter
algorithms. The new state estimation commands extendedKalmanFilter and
unscentedKalmanFilter are useful for estimation of states when new data is available
during the operation of the system. You can use the state estimates for state-feedback
controllers and for applications such as condition monitoring and fault detection. You can
use MATLAB Compiler or MATLAB Coder software to deploy the estimators in your
application.

For an example of online state estimation, see Nonlinear State Estimation Using
Unscented Kalman Filter.

Phase-Wrap Branch Option: Specify cutoff point for wrapping
phase in response plots

By default, response plots that show phase response, such as Bode and Nichols plots,
display the exact phase. You can make these plots wrap the phase into the interval [-1809,
1809) by checking Wrap Phase in the plot Property Editor, the Linear System Analyzer
Preferences Editor, or the Toolbox Preferences Editor.

In R2016b, checking Wrap Phase enables a new Branch field that lets you specify the

value at which accumulated phase wraps in the response plot. For example, entering 0
causes the plot to wrap the phase into the interval [09,3602).

4-3

https://www.mathworks.com/help/releases/R2016b/control/ref/systuneoptions.html
https://www.mathworks.com/help/releases/R2016b/control/ref/getsectorindex.html
https://www.mathworks.com/help/releases/R2016b/control/ref/sectorplot.html
https://www.mathworks.com/help/releases/R2016b/control/ref/extendedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/control/ref/unscentedkalmanfilter.html
https://www.mathworks.com/help/releases/R2016b/control/ug/nonlinear-state-estimation-using-unscented-kalman-filter.html
https://www.mathworks.com/help/releases/R2016b/control/ug/nonlinear-state-estimation-using-unscented-kalman-filter.html

R2016b

4-4

At the command line, turn on phase wrapping by setting the PhaseWrapping option of

bodeoptions or nicholsoptions to 'on'. Specify the phase-wrap cutoff point using
the new PhaseWrappingBranch option.

In R2015b and R2016a, phase-wrapped plots used the interval [02,3602). Before R2015b,
phase-wrapped plots used the interval [-1809,1809).

https://www.mathworks.com/help/releases/R2016b/control/ref/bodeoptions.html
https://www.mathworks.com/help/releases/R2016b/control/ref/nicholsoptions.html

R2016a

Version: 10.0
New Features
Bug Fixes

Compatibility Considerations

R2016a

Redesigned Control System Designer App: Design SISO
controllers for feedback systems using improved interactive
workflows

The redesigned Control System Designer app streamlines workflows for designing
SISO controllers for feedback control systems using graphical and automated tuning

methods.
4\ Control System Designer - I0Transfer_r2y: step EI@
[CONTROL SYSTEM IR E Pl S = = O
: E= ~
O od o= g @ = @
Open Save Edit Multimodel Tuning New Store Retrieve Compare Export Preferences
5 . 5 : Architectt Config = - Plot = -
FILE ARCHITECTURE TUNING METHODS |ANALYSIS DESIGNS RESULTS |PREFERENCES
Data Browser ® | Bode Editor for LoopTransfer_C | [10Transfer_r2y: step 1
w Controllers
3 Bode Editor for LoopTransfer_C Step Response
C L From: r To:y
1.2
20
g o
. P 4 b
w Designs S 20
'
g
e 0.8
G.M.:inf
-60 | Freq: Inf ©
Stable loop 3
-80 %_ 0.6
w Responses a0 1=
LoopTransfer_C - =
I0Transfer_r2y 0.4
10Transfer_r2u = ;3; .
I0Transfer_duy 2
I0Transfer_dy2y o4 -135
& 0.2
w Preview -
P.M.: 60 deg
Freq: 6.33 rad/s
-180 0
10°! 10° 10! 102 103 0 0.5 1 1.5
Frequency (rad/s) Time (seconds)
i) Compensator tuned using PID tuning.

For more information on using Control System Designer, see:

5-2

* Control System Designer

* Control System Designer Tuning Methods

* Bode Diagram Design

* Design Compensator Using Automated Tuning Methods
* Analyze Designs Using Response Plots

Control System Tuner App and systune Command:
Automatically tune single-loop and multiloop control systems
to meet design requirements

Control System Toolbox now includes automatic tuning tools that previously required a
Robust Control Toolbox™ license. Control System Tuner and the systune command
automatically tune control systems from high-level design goals you specify, such as
reference tracking, disturbance rejection, and stability margins.

To tune a control system, you specify the tunable elements of your control system. You
then capture your design requirements using the library of tuning goals. The software
jointly tunes all the free parameters of your control system regardless of architecture,
number of feedback loops, or whether it is modeled in MATLAB or Simulink. (Tuning
control systems modeled in Simulink requires a Simulink Control Design license.)

For information about using these tools, see:

* Tuning with Control System Tuner
* Programmatic Tuning
You can also use the systune command to tune gain-scheduled controllers for control

systems in which plant dynamics change with operating conditions or time. For more
information, see Gain Scheduling.

Model Reducer App: Compute and compare reduced-order
models using interactive workflows

The new Model Reducer app is an interactive tool for computing reduced-order
approximations of high-order models. Working with lower-order models can simplify
analysis and control design. Simpler models are also easier to understand and
manipulate. You can reduce a plant model to focus on relevant dynamics before designing
a controller for the plant. Or, you can use model reduction to simplify a full-order

5-3

https://www.mathworks.com/help/releases/R2016a/control/ref/controlsystemdesigner-app.html
https://www.mathworks.com/help/releases/R2016a/control/ug/control-system-designer-tuning-methods.html
https://www.mathworks.com/help/releases/R2016a/control/ug/bode-diagram-design.html
https://www.mathworks.com/help/releases/R2016a/control/ug/design-compensator-using-automated-tuning-methods.html
https://www.mathworks.com/help/releases/R2016a/control/ug/analyze-designs-using-response-plots.html
https://www.mathworks.com/help/releases/R2016a/control/tuning-with-control-system-tuner-app.html
https://www.mathworks.com/help/releases/R2016a/control/programmatic-control-system-tuning.html
https://www.mathworks.com/help/releases/R2016a/control/gain-scheduled-controller-tuning.html

R2016a

controller. Using any of the following model-reduction methods, Model Reducer helps
you reduce model order while preserving model characteristics that are important to your
application:

* Balanced Truncation — Remove states with low energy contributions.
* Pole/Zero Simplification — Eliminate canceling or near-canceling pole-zero pairs.

* Mode Selection — Select modes by specifying a region of interest in the complex
plane.

Model Reducer also provides response plots and error plots to help ensure that the
reduced-order model preserves important dynamics.

For an example showing how to use Model Reducer, see Reduce Model Order Using the
Model Reducer App. For more information about model reduction generally, see Model
Reduction Basics.

Passivity and Conic Sectors: Analyze and tune control systems
for passivity and other sector bounds

A linear system is passive when it cannot produce energy on its own and can only
dissipate the energy initially stored in it. More generally, an I/O map is passive if, on
average, increasing the output requires increasing the input. Passive control is often part
of the safety requirements in process control, tele-operation, human-machine interfaces,
and system networks.

Use the following new commands to analyze the passivity of linear systems:

* 1isPassive — Check passivity of linear system.

* getPassiveIndex — Compute various measures of the excess or shortage of
passivity of a linear system.

* passiveplot — Calculate and plot passivity index as a function of frequency.

Mathematically, a system is passive when all its I/O trajectories are restricted to a
particular sector of the I/O space. More generally, a conic system is a system whose
trajectories lie in a given conic sector. Conic sector bounds arise, for example, in robust
control of feedback loops with static nonlinearities. The following new commands let you
analyze how well a linear system lies within any conic sector.

https://www.mathworks.com/help/releases/R2016a/control/ug/balanced-truncation-model-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ug/pole-zero-simplification.html
https://www.mathworks.com/help/releases/R2016a/control/ug/mode-selection-model-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ug/reduce-model-order-using-the-model-reducer-app.html
https://www.mathworks.com/help/releases/R2016a/control/ug/reduce-model-order-using-the-model-reducer-app.html
https://www.mathworks.com/help/releases/R2016a/control/ug/about-model-order-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ug/about-model-order-reduction.html
https://www.mathworks.com/help/releases/R2016a/control/ref/ispassive.html
https://www.mathworks.com/help/releases/R2016a/control/ref/getpassiveindex.html
https://www.mathworks.com/help/releases/R2016a/control/ref/passiveplot.html

+ getSectorIndex — Check whether the output trajectories of a linear system lie in a
particular conic sector. Compute the relative sector index, a measure of how tightly
the trajectories fit within the sector.

* getSectorCrossover — Compute the frequencies at which the range of trajectories
crosses the sector boundary.

* sectorplot — Calculate and plot sector index as a function of frequency.

New tuning goals let you enforce passivity when tuning a control system using Control
System Tuner or the systune command.

Constraint Command Line Control System Tuner
Enforce passivity on TuningGoal.Passivity |Passivity Goal

specified I/Os in the control

system

Enforce passivity on TuningGoal.WeightedPa |Weighted Passivity Goal
specified I/Os with ssivity

frequency-dependent

weighting

For more background and details about the notions of passivity and sector bounds, see:

* About Passivity and Passivity Indices
e About Sector Bounds and Sector Indices

Limited Balanced Truncation: Reduce model order according
to energies within time-domain and frequency-domain
intervals

You can now perform balanced-truncation model reductio